
gpCAM

Marcus Michael Noack

May 08, 2023

SETUP

1 Installation 3

2 Examples 5

3 Common Bugs and Fixes 7

4 Logging 9
4.1 Configuring logging . 9

5 gpCAM API Levels 11

6 AutonomousExperimenter 13

7 gpOptimizer 19

8 fvgpOptimizer 25

9 Advanced Use of gpCAM 29
9.1 Prior-Mean Functions to Communicate Trends . 29
9.2 Tailored Acquisition Functions for Feature Finding . 29
9.3 Tailored Kernel Functions for Hard Constraints on the Posterior Mean 29
9.4 Tailored Cost Functions for Optimizing Data Acquisition when Costs are Present 30
9.5 Constrained Optimization . 31

10 gpCAM 33

Index 41

i

ii

gpCAM

Getting started with gpCAM is simple:

1. Install the Code.

2. Decide on the level you want to run gpCAM on and check out the api based on that decision.

3. Run your experiment or simulation autonomously!

If you hit any roadblocks, read the documentation carefully, and have a look at common bugs.

And if some particularly stubborn problems remain, contact MarcusNoack@lbl.gov

SETUP 1

mailto:MarcusNoack@lbl.gov

gpCAM

2 SETUP

CHAPTER

ONE

INSTALLATION

To install gpCAM do the following:

1. make sure you have Python >=3.7 installed

2. open a terminal

3. create a python environment: e.g. python3 -m venv test_env, for conda: conda create --name
my_cool_venv_name python=3.8

4. activate the environment: source ./test_env/bin/activate, conda: activate my_cool_venv_name
(Windows) and source activate my_cool_venv_name (Mac, Linux)

5. type pip install gpcam

6. if any problems occur, update pip pip install --upgrade pip, setuptools pip install --upgrade
setuptools and repeat step 5, or try installing from source: python -m pip install git+https://
github.com/lbl-camera/gpCAM.git

3

gpCAM

4 Chapter 1. Installation

CHAPTER

TWO

EXAMPLES

Available Examples:

• Basic minimal example

• gpCAM advanced-user test

• More examples can be found on the official website

5

https://gpcam.lbl.gov/examples/minimal-gpcam7-example
https://gpcam.lbl.gov/examples/advanced-gpcam-7-example
https://gpcam.lbl.gov/examples

gpCAM

6 Chapter 2. Examples

CHAPTER

THREE

COMMON BUGS AND FIXES

Error Message Solution
Key Error: “Does not support option: ‘fastmath’ A numba error.

Please update
numba

Matrix Singular Normally that
means that data
points are too close
and different for
the given kernel
definition. Try us-
ing the exponential
kernel, check for
duplicates in the
data or add more
noise to the data

Value Error: Object arrays cannot be loaded when allow_pickle = False You probably
used a hand-made
python function
that loads a file
without specifying
allow_pickle =
True

General installation issues update pip, rerun
installation, pip in-
stall wheel

ERROR: Failed building wheel for psutil Rerun installation
RuntimeError: An attempt has been made to start a new process before thecurrent pro-
cess has finished its bootstrapping phase.This probably means that you are not using fork to
start yourchild processes and you have forgotten to use the proper idiomin the main mod-
ule:if __name__ == ‘__main__’: freeze_support() . . .The “freeze_support()” line can be
omitted if the programis not going to be frozen to produce an executable.distributed.nanny
- WARNING - Restarting workerTraceback (most recent call last):File “”, line 1,
in Traceback (most recent call last):File “/usr/lib/python3.8/multiprocessing/spawn.py”,
line 116, in spawn_mainFile “zmq_test.py”, line 75, in exitcode = _main(fd, par-
ent_sentinel)File “/usr/lib/python3.8/multiprocessing/spawn.py”, line 125, in _mainpre-
pare(preparation_data)File “/usr/lib/python3.8/multiprocessing/spawn.py”, line 236, in pre-
pare[and lot more DASK stuff]

Put all your gp-
CAM code in
def main(): # all
the gpcam code
. . . if __name__
== “__main__”
main()

7

gpCAM

8 Chapter 3. Common Bugs and Fixes

CHAPTER

FOUR

LOGGING

The gpCAM package uses the Loguru library for sophisticated log management. This follows similar principles as the
vanilla Python logging framework, with additional functionality and performance benefits. You may want to enable
logging in interactive use, or for debugging purposes.

4.1 Configuring logging

To enable logging in gpCAM:

from loguru import logger
logger.enable("gpcam")

You may also want to similarly enable logging for the fvGP and HGDL packages if these are in use.

To configure the logging level:

logger.add(sys.stdout, filter="gpcam", level="INFO")

See Python’s reference on levels for more info.

To log to a file:

logger.add("file_{time}.log")

Loguru provides many further options for configuration.

9

https://github.com/Delgan/loguru
https://docs.python.org/3/howto/logging.html
https://github.com/Delgan/loguru

gpCAM

10 Chapter 4. Logging

CHAPTER

FIVE

GPCAM API LEVELS

Starting with version 7 of gpCAM, the user has several access points (from high level to low level):

• Using the AutonomousExperimenter functionality

– AutonomousExperimenterGP: implements an autonomous loop for a single-task GP

– AutonomousExperimenterfvGP: implements an autonomous loop for a multi-task GP

• The user can use the gpOptimizer (already available in version 6) functionality directly to get full control. The
gpOptimizer class is a function optimization wrapper around fvGP, the same is true for the fvgpOptimizer class.
Using the gpOptimizer functionality means implementing your own loop

• For GP related work only, the user can use the fvgp package directly (no suggestion capability, no native steering)

For tests and examples, check out the case studies on this very website, download the repository and go to “./tests”, or
visit the project website.

Quick Links:

• Repository

• AutonomousExperimenter (GP and fvGP)

• gpOptimizer and fvgpOptimizer

• The fvGP Package

• The HGDL Package

Have suggestions for the API or found a bug?

Please submit an issue on GitHub.

11

https://gpcam.lbl.gov/
https://github.com/lbl-camera/gpCAM/
https://fvgp.readthedocs.io/en/latest/index.html
https://hgdl.readthedocs.io/en/latest/index.html
https://github.com/lbl-camera/gpCAM/

gpCAM

12 Chapter 5. gpCAM API Levels

CHAPTER

SIX

AUTONOMOUSEXPERIMENTER

class gpcam.autonomous_experimenter.AutonomousExperimenterGP(parameter_bounds,
hyperparameters,
hyperparameter_bounds,
instrument_func=None,
init_dataset_size=None,
acq_func='variance',
cost_func=None,
cost_update_func=None,
cost_func_params={},
kernel_func=None,
prior_mean_func=None,
run_every_iteration=None,
x_data=None, y_data=None,
variances=None, dataset=None,
communicate_full_dataset=False,
compute_device='cpu',
use_inv=False, multi_task=False,
training_dask_client=None,
acq_func_opt_dask_client=None,
ram_economy=True, info=False,
args=None)

Executes the autonomous loop for a single-task Gaussian process. Use class AutonomousExperimenterfvGP for
multi-task experiments.

Parameters
• parameter_bounds (np.ndarray) – A numpy array of floats of shape D x 2 describing

the input space.

• hyperparameters (np.ndarray) – A 1-D numpy array of floats. The default kernel func-
tion expects a length of D+1, where the first value is a signal variance, followed by a length
scale in each direction of the input space. If a kernel function is provided, then the expected
length is determined by that function.

• hyperparameter_bounds (np.ndarray) – A 2-D array of floats of size J x 2, such that J
is the length matching the length of hyperparameters defining the bounds for training.

• instrument_func (Callable, optional) – A function that takes data points (a list of
dicts), and returns a similar structure with data filled in. The function is expected to commu-
nicate with the instrument and perform measurements, populating fields of the data input.

• init_dataset_size (int, optional) – If x and y are not provided and dataset is not
provided, init_dataset_size must be provided. An initial dataset is constructed randomly

13

gpCAM

with this length. The instrument_func is immediately called to measure values at these initial
points.

• acq_func (Callable, optional) – The acquisition function accepts as input a numpy
array of size V x D (such that V is the number of input points, and D is the parameter space
dimensionality) and a GPOptimizer object. The return value is 1-D array of length V pro-
viding ‘scores’ for each position, such that the highest scored point will be measured next.
Built-in functions can be used by one of the following keys: ‘shannon_ig’, ‘shannon_ig_vec’,
‘ucb’, ‘maximum’, ‘minimum’, ‘covariance’, ‘variance’, and ‘gradient’. If None, the default
function is the ‘variance’, meaning fvgp.gp.GP.posterior_covariance with variance_only =
True.

• cost_func (Callable, optional) – A function encoding the cost of motion through the
input space and the cost of a measurement. Its inputs are an origin (np.ndarray of size V
x D), x (np.ndarray of size V x D), and the value of cost_func_params; origin is the start-
ing position, and x is the destination position. The return value is a 1-D array of length V
describing the costs as floats. The ‘score’ from acq_func is divided by this returned cost to
determine the next measurement point. If None, the default is a uniform cost of 1.

• cost_update_func (Callable, optional) – A function that updates the
cost_func_params which are communicated to the cost_func. This accepts as input
costs (a list of cost values determined by instrument_func), bounds (a V x 2 numpy array)
and parameters object. The default is a no-op.

• cost_func_params (Any, optional) – An object that is communicated to the cost_func
and cost_update_func. The default is {}.

• kernel_func (Callable, optional) – A function that calculates the covariance be-
tween data points. It accepts as input x1 (a V x D array of positions), x2 (a U x D array
of positions), hyperparameters (a 1-D array of length D+1 for the default kernel), and a
gpcam.gp_optimizer.GPOptimizer instance. The default is a stationary anisotropic kernel
(fvgp.gp.GP.default_kernel).

• prior_mean_func (Callable, optional) – A function that evaluates the prior mean
at an input position. It accepts as input a gpcam.gp_optimizer.GPOptimizer instance, an
array of positions (of size V x D), and hyperparameters (a 1-D array of length D+1 for
the default kernel). The return value is a 1-D array of length V. If None is provided,
fvgp.gp.GP.default_mean_function is used.

• run_every_iteration (Callable, optional) – A function that is run at every itera-
tion. It accepts as input this gpcam.autonomous_experimenter.AutonomousExperimenterGP
instance. The default is a no-op.

• x_data (np.ndarray, optional) – Initial data point positions

• y_data (np.ndarray, optional) – Initial data point values

• variances (np.ndarray, optional) – Initial data point observation variances

• dataset (string, optional) – A filename of a gpcam-generated file that is used to ini-
tialize a new instance.

• communicate_full_dataset (bool, optional) – If True, the full dataset will be com-
municated to the instrument_func on each iteration. If False, only the newly suggested data
points will be communicated. The default is False.

• compute_device (str, optional) – One of “cpu” or “gpu”, determines how linear sys-
tem solves are run. The default is “cpu”.

• use_inv (bool, optional) – If True, the algorithm calculates and stores the inverse of
the covariance matrix after each training or update of the dataset, which makes computing

14 Chapter 6. AutonomousExperimenter

gpCAM

the posterior covariance faster. For larger problems (>2000 data points), the use of inversion
should be avoided due to computational instability. The default is False. Note, the training
will always use a linear solve instead of the inverse for stability reasons.

• training_dask_client (distributed.client.Client, optional) – A Dask Dis-
tributed Client instance for distributed training. If None is provided, a new
dask.distributed.Client instance is constructed.

• acq_func_opt_dask_client (distributed.client.Client, optional) – A Dask
Distributed Client instance for distributed acquisition_func computation. If None is pro-
vided, a new dask.distributed.Client instance is constructed.

• info (bool, optional) – bool specifying if the should be extensive std out. Default =
False

x_data

Data point positions

Type np.ndarray

y_data

Data point values

Type np.ndarray

variances

Data point observation variances

Type np.ndarray

data.dataset

All data

Type list

hyperparameter_bounds

A 2-D array of floats of size J x 2, such that J is the length matching the length of hyperparameters defining
the bounds for training.

Type np.ndarray

gp_optimizer

A GPOptimizer instance used for initializing a gaussian process and performing optimization of the poste-
rior.

Type gpcam.gp_optimizer.GPOptimizer

go(N=1000000000000000.0, breaking_error=1e-50, retrain_globally_at=(20, 50, 100, 400, 1000),
retrain_locally_at=(20, 40, 60, 80, 100, 200, 400, 1000), retrain_async_at=(), update_cost_func_at=(),
acq_func_opt_setting=<function AutonomousExperimenterGP.<lambda>>, training_opt_max_iter=20,
training_opt_pop_size=10, training_opt_tol=1e-06, acq_func_opt_max_iter=20,
acq_func_opt_pop_size=20, acq_func_opt_tol=1e-06, acq_func_opt_tol_adjust=0.1,
number_of_suggested_measurements=1, checkpoint_filename=None, constraints=(), ask_args=None,
break_condition_callable=<function AutonomousExperimenterGP.<lambda>>)

Function to start the autonomous-data-acquisition loop.

Parameters
• N (int, optional) – Run until N points are measured. The default is 1e15.

• breaking_error (float, optional) – Run until breaking_error is achieved (or at max
N). The default is 1e-50.

15

gpCAM

• retrain_globally_at (Iterable[int], optional) – Retrains the hyperparame-
ters at the given number of measurements using global optimization. The deafult is
[20,50,100,400,1000].

• retrain_locally_at (Iterable[int], optional) – Retrains the hyperparameters at
the given number of measurements using local gradient-based optimization. The default is
[20,40,60,80,100,200,400,1000].

• retrain_async_at (Iterable[int], optional) – Retrains the hyperparameters at
the given number of measurements using the HGDL algorithm. This training is asyn-
chronous and can be run in a distributed fashion using training_dask_client. The default
is [].

• update_cost_func_at (Iterable[int], optional) – Calls the update_cost_func at
the given number of measurements. Default = ()

• acq_func_opt_setting (Callable, optional) – A callable that accepts as input the
iteration index and returns either ‘local’, ‘global’, ‘hgdl’. This switches between local
gradient-based, global and hybrid optimization for the acquisition function. The default is
lambda number: “global” if number % 2 == 0 else “local”.

• training_opt_max_iter (int, optional) – The maximum number of iterations for
any training. The default value is 20.

• training_opt_pop_size (int, optional) – The population size used for any training
with a global component (HGDL or standard global optimizers). The default value is 10.

• training_opt_tol (float, optional) – The optimization tolerance for all training
optimization. The default is 1e-6.

• acq_func_opt_max_iter (int, optional) – The maximum number of iterations for
the acq_func optimization. The default is 20.

• acq_func_opt_pop_size (int, optional) – The population size used for any
acq_func optimization with a global component (HGDL or standard global optimizers).
The default value is 20.

• acq_func_opt_tol (float, optional) – The optimization tolerance for all acq_func
optimization. The default value is 1e-6

• acq_func_opt_tol_adjust (float, optional) – The acq_func optimization toler-
ance is adjusted at every iteration as a fraction of this value. The default value is 0.1 .

• number_of_suggested_measurements (int, optional) – The algorithm will try to
return this many suggestions for new measurements. This may be limited by how many
optima the algorithm may find. If greater than 1, then the acq_func optimization method
is automatically set to use HGDL. The default is 1.

• checkpoint_filename (str, optional) – When provided, a checkpoint of all the ac-
cumulated data will be written to this file on each iteration.

• constraints (tuple, optional) – If provided, this subjects the acquisition function
optimization to constraints. For the definition of the constraints, follow the structure your
chosen optimizer requires.

• break_condition_callable (Callable, optional) – Autonomous loop
will stop when this function returns True. The function takes as input a gp-
cam.autonomous_experimenter instance

• ask_args (dict, optional) – For now, only required for acquisiton function “target
probability”. In this case it should be defined as {“a”: some lower bound, “b”:some upper
bound}, example: “ask_args = {“a”: 1.0,”b”: 3.0}”.

16 Chapter 6. AutonomousExperimenter

gpCAM

kill_all_clients()

Function to kill both dask.distibuted.Client instances. Will be called automatically at the end of go().

kill_training()

Function to kill an active asynchronous training

train(pop_size=10, tol=1e-06, max_iter=20, method='global')
Function to train the Gaussian Process. The use is entirely optional; this function will be called as part of
the go() command.

Parameters
• pop_size (int, optional) – The number of individuals in case method=`’global’`. De-

fault = 10

• tol (float, optional) – Convergence tolerance for the local optimizer (if method =
‘local’) Default = 1e-6

• max_iter (int, optional) – Maximum number of iterations for the global method.
Default = 20

• method (str, optional) – Method to be used for the training. Default is ‘global’ which
means a differetnial evolution algorithm is run with the specified parameters. The options
are ‘global’ or ‘local’, or ‘mcmc’.

train_async(max_iter=10000, dask_client=None, local_method='L-BFGS-B', global_method='genetic')
Function to train the Gaussian Process asynchronously using the HGDL optimizer. The use is entirely
optional; this function will be called as part of the go() command, if so specified. This call starts a highly
parallelized optimization process, on an architecture specified by the dask.distributed.Client. The main
purpose of this function is to allow for large-scale distributed training.

Parameters
• max_iter (int, optional) – Maximum number of iterations for the global method.

Default = 10000 It is important to remember here that the call is run asynchronously, so
this number does not affect run time.

• local_method (str, optional) – Local method to be used inside HGDL. Many
scipy.optimize.minimize methods can be used, or a user-defined callable. Please read the
HGDL docs for more information. Default = ‘L-BFGS-B’.

• global_method (str, optional) – Local method to be used inside HGDL. Please read
the HGDL docs for more information. Default = ‘genetic’.

update_hps()

Function to update the hyperparameters if an asynchronous training is running. Will be called during go()
as specified.

17

gpCAM

18 Chapter 6. AutonomousExperimenter

CHAPTER

SEVEN

GPOPTIMIZER

class gpcam.gp_optimizer.GPOptimizer(input_space_dimension, input_space_bounds, args=None)
This class is an optimization wrapper around the fvgp package for single-task (scalar-valued) Gaussian Processes.
Gaussian Processes can be initialized, trained, and conditioned; also the posterior can be evaluated and plugged
into optimizers to find its maxima.

Parameters
• input_space_dimension (int) – Integer specifying the number of dimensions of the input

space.

• input_space_bounds (np.ndarray) – A numpy array of floats of shape D x 2 describing
the input space range

• args (any, optional) – args will be available as class attributes in kernel and prior-mean
functions

x_data

Datapoint positions

Type np.ndarray

y_data

Datapoint values

Type np.ndarray

variances

Datapoint observation variances

Type np.ndarray

input_dim

Dimensionality of the input space

Type int

input_space_bounds

Bounds of the input space

Type np.ndarray

gp_initialized

A check whether the object instance has an initialized Gaussian Process.

Type bool

19

gpCAM

hyperparameters

Only available after training is executed.

Type np.ndarray

ask(position=None, n=1, acquisition_function='variance', bounds=None, method='global', pop_size=20,
max_iter=20, tol=1e-06, constraints=(), x0=None, vectorized=True, args={}, multi_task=False,
dask_client=None)
Given that the acquisition device is at “position”, the function ask()s for “n” new optimal points within
certain “bounds” and using the optimization setup: “acquisition_function_pop_size”, “max_iter” and “tol”

Parameters
• position (np.ndarray, optional) – Current position in the input space. If a cost

function is provided this position will be taken into account to guarantee a cost-efficient
new suggestion. The default is None.

• n (int, optional) – The algorithm will try to return this many suggestions for new
measurements. This may be limited by how many optima the algorithm may find. If greater
than 1, then the acq_func optimization method is automatically set to use HGDL. The
default is 1.

• acquisition_function (Callable, optional) – The acquisition function accepts as
input a numpy array of size V x D (such that V is the number of input points, and D is
the parameter space dimensionality) and a GPOptimizer object. The return value is 1-D
array of length V providing ‘scores’ for each position, such that the highest scored point
will be measured next. Built-in functions can be used by one of the following keys: ‘shan-
non_ig’, ‘shannon_ig_multi’, ‘shannon_ig_vec’, ‘ucb’, ‘maximum’, ‘minimum’, ‘covari-
ance’, ‘variance’, and ‘gradient’. If None, the default function is the ‘variance’, meaning
fvgp.gp.GP.posterior_covariance with variance_only = True.

• bounds (np.ndarray, optional) – A numpy array of floats of shape D x 2 describing
the search range. The default is the entire input space.

• method (str, optional) – A string defining the method used to find the maximum of
the acquisition function. Choose from global, local, hgdl. The default is global.

• pop_size (int, optional) – An integer defining the number of individuals if global is
chosen as method. The default is 20. For hgdl this will be overwritten by the ‘dask_client`
definition.

• max_iter (int, optional) – This number defined the number of iterations before the
optimizer is terminated. The default is 20.

• tol (float, optional) – Termination criterion for the local optimizer. The default is
1e-6.

• x0 (np.ndarray, optional) – A set of points as numpy array of shape V x D, used as
starting location(s) for the local and hgdl optimization algorithm. The default is None.

• vectorized (bool, optional) – If your acquisiiton function vecotrized to return the
solution to an array of inquiries as an array, this optionmakes the optimization faster if
method = ‘global’ is used. The default is True but will bes et to False if method is not
global.

• constraints (tuple of object instances, optional) – Either a tuple of
hgdl.constraints.NonLinearConstraint or scipy constraints instances, depending on the used
optimizer.

20 Chapter 7. gpOptimizer

gpCAM

• args (dict, optional) – Provides arguments for certain acquisition functions, such as,
“target_probability”. In this case it should be defined as {“a”: some lower bound, “b”:some
upper bound}, example: “args = {“a”: 1.0,”b”: 3.0}”.

• dask_client (distributed.client.Client, optional) – A Dask Distributed
Client instance for distributed acquisition_func computation. If None is provided, a new
dask.distributed.Client instance is constructed.

Returns dictionary – Found maxima of the acquisition function, the associated function values
and optimization object that, only in case of method = hgdl can be queried for solutions.

Return type {‘x’: np.array(maxima), “f(x)” : np.array(func_evals), “opt_obj” : opt_obj}

evaluate_acquisition_function(x, acquisition_function='variance', origin=None)
Function to evaluate the acquisition function.

Parameters
• x (np.ndarray) – Point positions at which the acquisition function is evaluated.

• acquisition_function (Callable, optional) – Acquisiiton functio to execute.
Callable with inputs (x,gpcam.gp_optimizer.GPOptimizer), where x is a V x D array of
input x_data. The return value is a 1-D array of length V. The default is variance.

• origin (np.ndarray, optional) – If a cost function is provided this 1-D numpy array
of length D is used as the origin of motion.

Returns The acquisition function evaluations at all points `x`
Return type np.ndarray

get_data()

Function that provides a way to access the class attributes.

Returns dictionary of class attributes
Return type dict

init_cost(cost_function, cost_function_parameters=None, cost_update_function=None)
This function initializes the cost function and its parameters. If used, the acquisition function will be
augmented by the costs which leads to different suggestions.

Parameters
• cost_function (Callable) – A function encoding the cost of motion through the input

space and the cost of a measurement. Its inputs are an origin (np.ndarray of size V x D),
x (np.ndarray of size V x D), and the value of cost_func_params; origin is the starting
position, and x is the destination position. The return value is a 1-D array of length V
describing the costs as floats. The ‘score’ from acquisition_function is divided by this
returned cost to determine the next measurement point.

• cost_function_parameters (object, optional) – This object is transmitted to the
cost function; it can be of any type. The default is None.

• cost_update_function (Callable, optional) – If provided this function will be
used when gpcam.gp_optimizer.GPOptimizer.update_cost_function is called. The func-
tion cost_update_function accepts as input costs (a list of cost values usually determined
by instrument_func) and a parameter object. The default is a no-op.

Return type No return, cost function will automatically be used by GPOptimizer.ask()

21

gpCAM

init_gp(init_hyperparameters, compute_device='cpu', gp_kernel_function=None, gp_mean_function=None,
gp_kernel_function_grad=None, gp_mean_function_grad=None, normalize_y=False,
use_inv=False, ram_economy=True)

Function to initialize the GP.

Parameters
• init_hyperparameters (np.ndarray) – Initial hyperparameters as 1-D numpy array.

• compute_device (str, optional) – One of “cpu” or “gpu”, determines how linear
system solves are run. The default is “cpu”.

• gp_kernel_function (Callable, optional) – A function that calculates the covari-
ance between datapoints. It accepts as input x1 (a V x D array of positions), x2 (a U x
D array of positions), hyperparameters (a 1-D array of length D+1 for the default kernel),
and a gpcam.gp_optimizer.GPOptimizer instance. The default is a stationary anisotropic
kernel (fvgp.gp.GP.default_kernel).

• gp_mean_function (Callable, optional) – A function that evaluates the prior mean
at an input position. It accepts as input a gpcam.gp_optimizer.GPOptimizer instance, an
array of positions (of size V x D), and hyperparameters (a 1-D array of length D+1 for
the default kernel). The return value is a 1-D array of length V. If None is provided,
fvgp.gp.GP.default_mean_function is used.

• use_inv (bool, optional) – If True, the algorithm calculates and stores the inverse of
the covariance matrix after each training or update of the dataset, which makes computing
the posterior covariance faster. For larger problems (>2000 data points), the use of inversion
should be avoided due to computational instability. The default is False. Note, the training
will always use a linear solve instead of the inverse for stability reasons.

• ram_economy (bool, optional) – Offers a ram-efficient way to compute marginal-log-
likelihood derivatives for training.

kill_async_train(opt_obj)
Function to kill an asynchronous training. This shuts down the associated dask.distributed.Client.

Parameters opt_obj (object instance) – Object instance created by gp-
cam.gp_optimizer.GPOptimizer.train_gp_async()

stop_async_train(opt_obj)
Function to stop an asynchronous training. This leaves the dask.distributed.Client alive.

Parameters opt_obj (object instance) – Object instance created by gp-
cam.gp_optimizer.GPOptimizer.train_gp_async()

tell(x, y, variances=None)
This function can tell() the gp_optimizer class the data that was collected. The data will instantly be used
to update the gp data if a GP was previously initialized.

Parameters
• x (np.ndarray) – Point positions (of shape U x D) to be communicated to the Gaussian

Process.

• y (np.ndarray) – Point values (of shape U x 1 or U) to be communicated to the Gaussian
Process.

• variances (np.ndarray, optional) – Point value variances (of shape U x 1 or U) to
be communicated to the Gaussian Process. If not provided, the GP will 1% of the y values
as variances.

22 Chapter 7. gpOptimizer

gpCAM

train_gp(hyperparameter_bounds, method='global', pop_size=20, tolerance=1e-06, max_iter=120,
constraints=(), deflation_radius=None, dask_client=None)

Function to train a Gaussian Process.

Parameters
• hyperparameters_bounds (np.ndarray) – Bounds for the optimization of the hyper-

parameters of shape (V x 2)

• max_iter (int, optional) – Number of iterations before the optimization algorithm is
terminated. The default is 120

• method (str or callable, optional) – Optimization method. Choose from ‘local’
or ‘global’, or ‘mcmc’. The default is global. The argument also accepts a callable that
accepts as input a fvgp.gp.GP instance and returns a new vector of hyperparameters.

• pop_size (int, optional) – The number of individuals used if global is chosen as
method.

• tolerance (float, optional) – Tolerance to be used to define a termination criterion
for the optimizer.

• constraints (tuple of object instances, optional) – Scipy constraints in-
stances, depending on the used optimizer.

Returns hyperparameters – This is just informative, the Gaussian Process is automatically up-
dated.

Return type np.ndarray

train_gp_async(hyperparameter_bounds, max_iter=10000, dask_client=None, deflation_radius=None,
constraints=(), local_method='L-BFGS-B', global_method='genetic')

Function to train a Gaussian Process asynchronously on distributed HPC compute architecture using the
HGDL software package.

Parameters
• hyperparameters_bounds (np.ndarray) – Bounds for the optimization of the hyper-

parameters of shape (V x 2)

• max_iter (int, optional) – Number of iterations before the optimization algorithm
is terminated. Since the algorithm works asynchronously, this number can be high. The
default is 10000

• constraints (tuple of object instances, optional) – Either a tuple of
hgdl.constraints.NonLinearConstraint or scipy constraints instances, depending on the used
optimizer.

• dask_client (distributed.client.Client, optional) – A Dask Distributed
Client instance for distributed training. If None is provided, a local dask.distributed.Client
instance is constructed.

• local_method (str, optional) – Controls the local optimizer running in HGDL. Many
scipy.minimize optimizers can be used, in addition, “dNewton”. L-BFGS-B is the default.

• global_method (str, optional) – Global optimization step running in HGDL. Choose
from genetic or ‘random’. The default is genetic

Returns
• This function return an optimization object (opt_obj) that can be used to stop(opt_obj) or

kill(opt_obj)

23

gpCAM

• the optimization.

• Call gpcam.gp_optimizer.GPOptimizer.update_hyperparameters(opt_obj) to update the

• current Gaussian Process with the new hyperparameters. This allows to start several op-
timization procedures

• and selectively use or stop them.

update_cost_function(measurement_costs)
This function updates the parameters for the user-defined cost function It essentially calls the user-given
cost_update_function which should return the new parameters how they are used by the cost function.
:param measurement_costs: An arbitrary object that describes the costs when moving in the parameter
space.

It can be arbitrary because the cost function using the parameters and the cost_update_function
updating the parameters are both user-defined and this object has to be in accordance with those
definitions.

Return type No return, the cost function parameters will automatically be updated.

update_hyperparameters(opt_obj)
Function to update the Gaussian Process hyperparameters is an asynchronous training is running.

Parameters opt_obj (object instance) – Object instance created by gp-
cam.gp_optimizer.GPOptimizer.train_gp_async()

Returns hyperparameters
Return type np.ndarray

24 Chapter 7. gpOptimizer

CHAPTER

EIGHT

FVGPOPTIMIZER

class gpcam.gp_optimizer.fvGPOptimizer(input_space_dimension, output_space_dimension,
output_number, input_space_bounds, args=None)

This class is an optimization wrapper around the fvgp package for multi-task (multi-variate) Gaussian Processes.
Gaussian Processes can be initialized, trained, and conditioned; also the posterior can be evaluated and plugged
into optimizers to find its maxima.

Parameters
• input_space_dimension (int) – Integer specifying the number of dimensions of the input

space.

• output_space_dimension (int) – Integer specifying the number of dimensions of the
output space. Most often 1.

• output_number (int) – Number of output values.

• input_space_bounds (np.ndarray) – A numpy array of floats of shape D x 2 describing
the input space range

• args (any, optional) – args will be available as class attributes in kernel and prior-mean
functions

x_data

Datapoint positions

Type np.ndarray

y_data

Datapoint values

Type np.ndarray

variances

Datapoint observation variances

Type np.ndarray

input_dim

Dimensionality of the input space

Type int

input_space_bounds

Bounds of the input space

Type np.ndarray

25

gpCAM

gp_initialized

A check whether the object instance has an initialized Gaussian Process.

Type bool

hyperparameters

Only available after the training is executed.

Type np.ndarray

get_data_fvGP()

Function that provides a way to access the class attributes.

Returns dictionary of class attributes
Return type dict

init_fvgp(init_hyperparameters, compute_device='cpu', gp_kernel_function=None,
gp_mean_function=None, use_inv=False, ram_economy=True)

Function to initialize the multi-task GP.

Parameters
• init_hyperparameters (np.ndarray) – Initial hyperparameters as 1-D numpy array.

• compute_device (str, optional) – One of “cpu” or “gpu”, determines how linear
system solves are run. The default is “cpu”.

• gp_kernel_function (Callable, optional) – A function that calculates the covari-
ance between datapoints. It accepts as input x1 (a V x D array of positions), x2 (a U x
D array of positions), hyperparameters (a 1-D array of length D+1 for the default kernel),
and a gpcam.gp_optimizer.GPOptimizer instance. The default is a stationary anisotropic
kernel (fvgp.gp.GP.default_kernel).

• gp_mean_function (Callable, optional) – A function that evaluates the prior mean
at an input position. It accepts as input a gpcam.gp_optimizer.GPOptimizer instance, an
array of positions (of size V x D), and hyperparameters (a 1-D array of length D+1 for
the default kernel). The return value is a 1-D array of length V. If None is provided,
fvgp.gp.GP.default_mean_function is used.

• use_inv (bool, optional) – If True, the algorithm calculates and stores the inverse of
the covariance matrix after each training or update of the dataset, which makes computing
the posterior covariance faster. For larger problems (>2000 data points), the use of inversion
should be avoided due to computational instability. The default is False. Note, the training
will always use a linear solve instead of the inverse for stability reasons.

• ram_economy (bool, optional) – Offers a ram-efficient way to compute marginal-log-
likelihood derivatives for training.

tell(x, y, variances=None, value_positions=None)
This function can tell() the gp_optimizer class the data that was collected. The data will instantly be used
to update the gp_data if a GP was previously initialized.

Parameters
• x (np.ndarray) – Point positions (of shape U x D) to be communicated to the Gaussian

Process.

• y (np.ndarray) – Point values (of shape U x 1 or U) to be communicated to the Gaussian
Process.

26 Chapter 8. fvgpOptimizer

gpCAM

• variances (np.ndarray, optional) – Point value variances (of shape U x 1 or U) to
be communicated to the Gaussian Process. If not provided, the GP will 1% of the y values
as variances.

• value_positions (np.ndarray, optional) – A 3-D numpy array of shape (U
x output_number x output_dim), so that for each measurement position, the out-
puts are clearly defined by their positions in the output space. The default is
np.array([[0],[1],[2],[3],. . . ,[output_number - 1]]) for each point in the input space. The
default is only permissible if output_dim is 1.

update_fvgp()

This function updates the data in the fvGP, tell(. . .) will call this function automatically if GP is already
intialized

27

gpCAM

28 Chapter 8. fvgpOptimizer

CHAPTER

NINE

ADVANCED USE OF GPCAM

The advanced use of gpCAM is about communicating domain knowledge in the form of kernel, acquisition and mean
functions, and optimization constraints.

9.1 Prior-Mean Functions to Communicate Trends

Often times an overall trend of the model is known in absolute terms or in parametric form. In that case, the user may
define their own prior mean function following the example below.

def himmel_blau(x,hyperparameters, gp_obj):
return (x[:,0] ** 2 + x[:,1] - 11.0) ** 2 + (x[:,0] + x[:,1] ** 2 - 7.0) ** 2

9.2 Tailored Acquisition Functions for Feature Finding

The acquisition function uses the output of a Gaussian process to steer the experiment or simulation to high-value
regions of the search space. You can find an example below.

def upper_confidence_bounds(x,obj):
a = 3.0 #3.0 for 95 percent confidence interval
mean = obj.posterior_mean(x)["f(x)"]
cov = obj.posterior_covariance(x)["v(x)"]
return mean + a * np.sqrt(cov) ##which is 1-d numpy array

9.3 Tailored Kernel Functions for Hard Constraints on the Posterior
Mean

Kernel functions are a tremendously powerful tool to communicate hard constraints to the Gaussian process. Examples
include the order of differentiability, periodicity, and symmetry of the model function. The kernel can be defined in
the way presented below.

def kernel_l2_single_task(x1,x2,hyperparameters,obj):
hps = hyperparameters
distance_matrix = np.zeros((len(x1),len(x2)))

for i in range(len(x1[0])-1):
(continues on next page)

29

gpCAM

(continued from previous page)

distance_matrix += abs(np.subtract.outer(x1[:,i],x2[:,i])/hps[1+i])**2

distance_matrix = np.sqrt(distance_matrix)

return hps[0] * obj.matern_kernel_diff1(distance_matrix,1)

9.4 Tailored Cost Functions for Optimizing Data Acquisition when
Costs are Present

Cost functions are very useful when the main effort of exploration does not come from the data acquisition itself but
from the motion through the search space. gpCAM can use cost and cost update functions. You can find examples for
both below. If costs are recorded during data acquisition, gpCAM can use them to update the cost function repeatedly.

def l2_cost(origin,x,arguments = None):
offset = arguments["offset"]
slope = arguments["slope"]
return slope*np.linalg.norm(np.abs(np.subtract(origin,x)), axis = 1)+offset

def update_l2_cost_function(costs, bounds, parameters):
print("Cost adjustment in progress...")
print("old cost parameters: ",parameters)
###remove outliers:
origins = []
points = []
motions = []
c = []
cost_per_motion = []

for i in range(len(costs)):
origins.append(costs[i]["origin"])
points.append(costs[i]["point"])
motions.append(abs(costs[i]["origin"] - costs[i]["point"]))
c.append(costs[i]["cost"])
cost_per_motion.append(costs[i]["cost"]/l2_cost(costs[i]["origin"],costs[i][

→˓"point"], parameters))

mean_costs_per_distance = np.mean(np.asarray(cost_per_motion))
sd = np.std(np.asarray(cost_per_motion))

for element in cost_per_motion:
if (

element >= mean_costs_per_distance - 2.0 * sd
and element <= mean_costs_per_distance + 2.0 * sd

):
continue

else:
motions.pop(cost_per_motion.index(element))
c.pop(cost_per_motion.index(element))
origins.pop(cost_per_motion.index(element))

(continues on next page)

30 Chapter 9. Advanced Use of gpCAM

gpCAM

(continued from previous page)

points.pop(cost_per_motion.index(element))
cost_per_motion.pop(cost_per_motion.index(element))

res = devo(compute_l2_cost_misfit, bounds, args = (origins, points,c), tol=1e-6,␣
→˓disp=True, maxiter=300, popsize=20, polish=False)

arguments = {"offset": res["x"][0],"slope": res["x"][1]}
print("New cost parameters: ", arguments)
return arguments

9.5 Constrained Optimization

It is now possible to create hgdl.constraints.NonLinearConstraint object instances and communicate them to
gp_optimizer.train and gp_optimizer.train_async(). Setting this up is a little tricky but potentially very beneficial.
Have a look at the HGDL documentation.

9.5. Constrained Optimization 31

gpCAM

32 Chapter 9. Advanced Use of gpCAM

CHAPTER

TEN

GPCAM

Mission of the project

gpCAM is an API and software designed to make autonomous data acquisition and analysis for experiments and sim-
ulations faster, simpler and more widely available. The tool is based on a flexible and powerful Gaussian process
regression at the core. The flexibility stems from the modular design of gpCAM which allows the user to implement
and import their own Python functions to customize and control almost every aspect of the software. That makes it
possible to easily tune the algorithm to account for various kinds of physics and other domain knowledge, and to iden-
tify and find interesting features. A specialized function optimizer in gpCAM can take advantage of HPC architectures
for fast analysis time and reactive autonomous data acquisition.

33

gpCAM

Simple API

The API is designed in a way that makes it easy to be used

34 Chapter 10. gpCAM

gpCAM

Powerful Computing

gpCAM is implemented using torch and DASK for fast training and predictions

Advanced Mathematics for Increased Flexibility

gpCAM allows the advanced user to import their own Python functions to control the training and prediction

35

gpCAM

Software for the Novice and the Expert

Simple approximation and autonomous-experimentation problems can be set up in minutes; the options for customiza-
tion are endless

Questions?

Contact MarcusNoack@lbl.gov to get more information on the project. We also encourage you to join the SLACK
channel.

Want to transform your science with autonomous data acquisition?

Take action

gpCAM is a software tool created by CAMERA

36 Chapter 10. gpCAM

mailto:MarcusNoack@lbl.gov
https://gpcam.slack.com/
https://gpcam.slack.com/
getting-started.html

gpCAM

The Center for Advanced Mathematics for Energy Research Application

Partners

37

gpCAM

38 Chapter 10. gpCAM

gpCAM

Supported by the US Department of Energy Office of Science
Advanced Scientific Computing Research (steven.lee@science.doe.gov)
Basic Energy Sciences (Peter.Lee@science.doe.gov)

39

https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://www.energy.gov/science/bes/basic-energy-sciences

gpCAM

40 Chapter 10. gpCAM

INDEX

A
ask() (gpcam.gp_optimizer.GPOptimizer method), 20
AutonomousExperimenterGP (class in gp-

cam.autonomous_experimenter), 13

D
dataset (gpcam.autonomous_experimenter.AutonomousExperimenterGP.data

attribute), 15

E
evaluate_acquisition_function() (gp-

cam.gp_optimizer.GPOptimizer method),
21

F
fvGPOptimizer (class in gpcam.gp_optimizer), 25

G
get_data() (gpcam.gp_optimizer.GPOptimizer

method), 21
get_data_fvGP() (gpcam.gp_optimizer.fvGPOptimizer

method), 26
go() (gpcam.autonomous_experimenter.AutonomousExperimenterGP

method), 15
gp_initialized (gpcam.gp_optimizer.fvGPOptimizer

attribute), 25
gp_initialized (gpcam.gp_optimizer.GPOptimizer at-

tribute), 19
gp_optimizer (gpcam.autonomous_experimenter.AutonomousExperimenterGP

attribute), 15
GPOptimizer (class in gpcam.gp_optimizer), 19

H
hyperparameter_bounds (gp-

cam.autonomous_experimenter.AutonomousExperimenterGP
attribute), 15

hyperparameters (gpcam.gp_optimizer.fvGPOptimizer
attribute), 26

hyperparameters (gpcam.gp_optimizer.GPOptimizer
attribute), 19

I
init_cost() (gpcam.gp_optimizer.GPOptimizer

method), 21
init_fvgp() (gpcam.gp_optimizer.fvGPOptimizer

method), 26
init_gp() (gpcam.gp_optimizer.GPOptimizer method),

21
input_dim (gpcam.gp_optimizer.fvGPOptimizer at-

tribute), 25
input_dim (gpcam.gp_optimizer.GPOptimizer at-

tribute), 19
input_space_bounds (gp-

cam.gp_optimizer.fvGPOptimizer attribute),
25

input_space_bounds (gp-
cam.gp_optimizer.GPOptimizer attribute),
19

K
kill_all_clients() (gp-

cam.autonomous_experimenter.AutonomousExperimenterGP
method), 16

kill_async_train() (gp-
cam.gp_optimizer.GPOptimizer method),
22

kill_training() (gp-
cam.autonomous_experimenter.AutonomousExperimenterGP
method), 17

S
stop_async_train() (gp-

cam.gp_optimizer.GPOptimizer method),
22

T
tell() (gpcam.gp_optimizer.fvGPOptimizer method), 26
tell() (gpcam.gp_optimizer.GPOptimizer method), 22
train() (gpcam.autonomous_experimenter.AutonomousExperimenterGP

method), 17
train_async() (gpcam.autonomous_experimenter.AutonomousExperimenterGP

method), 17

41

gpCAM

train_gp() (gpcam.gp_optimizer.GPOptimizer
method), 22

train_gp_async() (gpcam.gp_optimizer.GPOptimizer
method), 23

U
update_cost_function() (gp-

cam.gp_optimizer.GPOptimizer method),
24

update_fvgp() (gpcam.gp_optimizer.fvGPOptimizer
method), 27

update_hps() (gpcam.autonomous_experimenter.AutonomousExperimenterGP
method), 17

update_hyperparameters() (gp-
cam.gp_optimizer.GPOptimizer method),
24

V
variances (gpcam.autonomous_experimenter.AutonomousExperimenterGP

attribute), 15
variances (gpcam.gp_optimizer.fvGPOptimizer at-

tribute), 25
variances (gpcam.gp_optimizer.GPOptimizer at-

tribute), 19

X
x_data (gpcam.autonomous_experimenter.AutonomousExperimenterGP

attribute), 15
x_data (gpcam.gp_optimizer.fvGPOptimizer attribute),

25
x_data (gpcam.gp_optimizer.GPOptimizer attribute), 19

Y
y_data (gpcam.autonomous_experimenter.AutonomousExperimenterGP

attribute), 15
y_data (gpcam.gp_optimizer.fvGPOptimizer attribute),

25
y_data (gpcam.gp_optimizer.GPOptimizer attribute), 19

42 Index

	Installation
	Examples
	Common Bugs and Fixes
	Logging
	Configuring logging

	gpCAM API Levels
	AutonomousExperimenter
	gpOptimizer
	fvgpOptimizer
	Advanced Use of gpCAM
	Prior-Mean Functions to Communicate Trends
	Tailored Acquisition Functions for Feature Finding
	Tailored Kernel Functions for Hard Constraints on the Posterior Mean
	Tailored Cost Functions for Optimizing Data Acquisition when Costs are Present
	Constrained Optimization

	gpCAM
	Index

